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Abstract:  In this paper we introduce a new kernel function that 
could improve the SVMs classification accuracy. The proposed kernel 
function, called polynomial radial basis function (PRBF) combines 
both Gauss (RBF) and Polynomial (POLY) kernels. We prove that 
the proposed kernel converges faster than the Gauss and Polynomial 
kernels and also gives a good classification accuracy in nearly all the 
data sets specially with high dimension ones. Thereafter SVMs 
algorithm based on  the PRBF is implemented and experimented with 
non-separable data set with several attributes to prove its efficiency. 
Then, the obtained results are compared with SVMs algorithms that 
are based on Gausian and Polynomial kernels.  
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1. Introduction  

Vladimir Vapnik and his co-workers have introduced SVMs 
with a paper at the COLT 1992 conference [1]. They were 
developed to solve the classification problems, and they 
have been extended to the domain of regression problems. 
Classification is one of the most important machine learning 
operations. Although, it is relatively a new field of research, 
there exist several classification learning algorithms. 
 
One issue for improving the accuracy of SVMs is finding an 
appropriate kernel for the given data to improve the 
accuracy of SVMs. Most research relies on a priori 
knowledge to select the correct kernel, and then tweaks the 
kernel parameters via machine learning or trial-and-error. 
While there exist rules-of-thumb for choosing appropriate 
kernel functions and parameters, this limits the usefulness of 
SVMs to expert users, especially since different functions 
and parameters can have widely varying performance. 
Williamson et al.[2] published a method for the use of 
entropy numbers in choosing an appropriate kernel 
function. It was an attempt to explain kernel function choice 
by more analytical means rather than previous ad-hoc or 
empirical methods. The entropy numbers associated with 
mapping operators for Mercer kernels is discussed. In [3], it 
was discussed that previous work on invariance 
transformations was mostly appropriate only for linear SVM 
classifiers. For non-linear SVM classifiers, it discusses an 
analytical method of utilizing a kernel principal component 
analysis PCA map for incorporating invariance 
transformations [4]. 
 
 In a recent paper, Tsang et al.[5] discussed a way to take 
advantage of the approximations inherent in kernel 
classifiers, by using the Minimum Enclosing Ball algorithm 
as an alternative means of speeding up training. Training 

time had previously been reduced mostly by modifying the 
training set in some way. Their final classifiers, which they 
called the Core Vector Machine, converged in linear time 
with space requirements independent from number of data 
points. 
 
Completely achieving a Support Vector Machine with high 
accuracy classification, therefore requires specifying the high 
quality kernel function. This paper addresses the problem of 
data classification using SVMs. We improve the accuracy of  
SVMs using a new kernel function. We concentrate on non-
linearly separable data sets with this kernel to improve the 
classification accuracy. The proposed kernel function called 
PRBF that combines both Gauss and Polynomial kernels, is 
analyzed to prove its advantages over Gaussian and 
Polynomial kernels. The SVMs modified by the proposed 
PRBF kernel function is experimented using different data 
sets. 
 
The rest of this paper is organized as follows: In section 2, 
the formulation problem is stated. In section 3, the kernel 
functions are discussed. We obtain the new kernel function 
and discuss its analysis in section 4. A comparison between 
the proposed kernel and traditional ones is given in section 
5. Finally, section 6 gives our conclusions. 
 
 
2.The Problem Formulation 

The accuracy problem is usually represented by the 
proportion of correct classifications. For many data sets, the 
SVMs may not be able to find any separating hyperplane at 
all (accuracy equal 0), either because the kernel function is 
inappropriate for the training data or because the data 
contains mislabeled examples. The latter problem can be 
addressed by using a soft margin that accepts some 
misclassifications of the training examples. A soft margin 
can be obtained in two different ways. The first is to add a 
constant factor to the kernel function output whenever the 
given input vectors are identical. The second is to define a 
priori an upper bound on the size of the training set weights. 
In either case, the magnitude of the constant factor to be 
added to the kernel or to bound the size of the weights 
controls the number of training points that the system 
misclassifies. The setting of this parameter depends on the 
specific data at hand. Completely specifying a Support 
Vector Machine therefore requires specifying two 
parameters, the kernel function and the magnitude of the 
penalty for violating the soft margin. Hence, in order to 
improve the accuracy of  SVMs, we select a suitable kernel 
function, this is criterion for achieving better results. 
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2.1 Binary Classification Problem. 
Binary classification is the simplest one over all the 
classification tasks. Given a data set D of N samples: (x1, y1), 
(x2, y2), …(xn, yn) each sample is composed of a training 
example xi of length M, with elements xi = (x1, x2, …, xm), 
and a target value yi Є {-1,1}. The goal is to find a classifier 
with decision function, f(x), such that 

Dyxyxf iiii ∈∀= ),(,)( .  The performance of such a 

classifier is measured in terms of the classification error 
defined in equation (1): 
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In order to compute the classification error SVM, we use the 
Structural Risk Minimization (SRM). The Structural Risk 
Minimization (SRM)  considers the complexity of the 
learning machine when it searches for α to learn the 
mapping x→y. This is done by minimizing the expected risk,                         
,                     

∫= ),,()),,(()(exp yxdpyxferrorR ii αα  

  where p(x,y) is a prior probability [1].  
 
  2.1.2 Linear Classifiers.                                                            

There are two cases of linear classifiers. The first where a 
perfect mapping x→f(x,α) can be learned is called the 
separable case, and the other case where a perfect mapping 
is unattainable is called the non-separable case [5]. 
 
  The Separable Case.  
Consider the binary classification problem of an 
arrangement of data points as shown in Fig. (1a) the 
"square" denotes positive examples with target yi =+1, 
belonging to the set S+ , and the "round" denotes negative 
examples with target yi=-1, belonging to S-. One mapping 
that can separate S+ and S- is,       

                              
                             ).(),( bxwsignyxf +=             (2)     

where w is a weight vector and b the offset from origin.             
Given such a mapping, the hyperplane,                             ,                                                                                                               

0. =+ bxw                                  (3) 
defines the decision boundary between S+ and S-. 
 
The two data sets are said to be linearly separable by the 
hyperplane if a pair {w, b} can be chosen such that the 

mapping in equation (1) is perfect, this is the case in Fig. 
(1a). There are numerous values of {w, b} that creates 
separating hyperplanes. The SVMs classifier finds the only 
hyperplane that maximizes the margin between the two sets 
(optimal separating hyperplane) this is shown in Fig. (1b). . 
 

The Optimal Separating Hyperplane. 

Consider the problem of separating the set of training 
vectors belonging to two separate classes, 

 
}1,1{,)},,(,),........,{( 11 −∈∈= yRxyxyxD n

mm  

                                                                             (4) 

with the following decision function, 
).()( bxwsignxf +=  

If the data is linearly separable then, 
      0).( >+ bxwyi                                               (5) 

where  w  is the normal to the hyperplane, wb  is the 

perpendicular distance from the hyperplane to the origin, 
and ║w║ is the Euclidean norm of w. A canonical 
hyperplane is defined for the support vectors on one side of 
the separating hyperplane, 
                        1. =+ bxw                                            (6)   

for the support vectors on the other side, 
                      1. −=+ bxw                                           (7)     

and for the separating hyperplane, 
 0. =+ bxw                                                                   (8) 
if we consider a data point 1x , a support vector  on one side 

of the separating hyperplane and 2x  another support vector 

on the other side then by substituting into (6) and (7) and 
subtracting we get, 
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for the separating hyperplane the normal vector is,  

                          ,ˆ
w
ww =                                       (10) 

the margin can be defined as half the projection of (x1-x2) 
onto the normal vector giving, 

                                ,
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from equation (9), we can obtain,   
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which implies that, 
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For the linearly separable case, the support vector algorithm 
looks for the separating hyperplane with largest margin. In 
order to maximize  the margin(γ) the following term is 
minimized,                                     

),
2
1( 2wMin                                              (13) 

subject to:     
ibxwy ii ∀≥+ .1).(                            (14) 

  Now, Lagrange multipliers are applied for two reasons.        
 
First, the constraints will be replaced by constraints on the 
Lagrange multipliers, which will be much easier to handle. 
The second is that in this first formulation of the problem, 
the training data will only appear in the form of data 
products between vectors. This is a crucial property which 
will allow us to generalize the procedure to the non-linear 
case. The following Lagrangian is:        
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Thus, a positive Lagrange multipliers is introduced as,  
.,...,1, mii =α One for each of the inequality 

constraints.            
If, 
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re-substituting (17) and (18) back into (15) we obtain the 
following Wolf dual[1] which is maximized with respect to 
αi, 
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An important detail is that αi=0 for every xi except the ones 
that lie on the hyperplanes H+ and H-. These points where 
αi ≥ 0 are called support vectors. The number of 

(a) a separating hyperplane  
(b) the optimal separating hyperplane 

(a) 

(w.x)+w0<0 (w.x)+w0>0  w  

(b) 

H+

H-

Fig. (1): The hyperplane is separated into two separable sets.  
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support vectors in the solution is much less than the number 
of training examples. This is referred to the sparsity of the 
solution. When we solved the optimization problem and 
found the optimal hyperplane, the SVMs can attempt to 
predict unseen instances [6].     
                                           
 Non-Separable Case. 

The SVMs have been restricted to the case where a perfect 
mapping, x→f(x, α), can be learned. Most real-world data 
sets don't satisfy this condition, so an extension to the above 
formulation to handle non-separable data is done by creating 
an objective function that trades of misclassifications against 
minimizing ||w||2. Misclassifications are considered by 
adding a "slack" variable ζ ≥ 0 for each training example, 
and require that,                                   ,                                  

  − =      + 1 − ≤  −
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The new problem we are faced with is to minimize the sum 
of misclassification errors as well as minimizing ||w||2,  

,c(||w||
I

2 κζ )+ ∑ i  where c is a regularization parameter 

used to control the relation between the slack variables and 
||w||2,  k is an integer with typical values of 1 or 2. This 
minimization problem is also convex as in the linearly 
separable case. If we choose k to be 1, it has the advantage 
that ζi's and their Lagrange multipliers disappear from the 
dual Lagrangian problem. 
This objective function of the dual formulation becomes,                   
,                                                
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When this minimization problem is optimized we obtain, 
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where x+  is the positive example with shortest perpendicular 
distance from the decision boundary, and  x- is the closest  
negative  example.  

 The difference between the separable and non-separable is 
the added constraint in  equation (20),  now  αi's  have  an  
upper  bound  of  c.  
The support vectors in this solution are not only the training 
examples that lie on the hyperplane boundary but also the 
training examples that either falls between the two 
hyperplanes H+ and H- or falls on the wrong side of the 
decision surface.     
                                  

2.2. Multi-Class Support Vector Machines. 

The multi-class problem is defined as the classification 
problem that has many classes. While SVMs are  binary 
classifiers, i.e. they can classify two classes, we need some 
techniques to extend these classifiers to handle multiple 
classes. The goal of such a technique is to map the 
generalization abilities of the binary classifiers to the multi-
class domain. Multi-class SVMs are usually implemented by 
combining several two class SVMs. In literature, numerous 
schemes have been proposed to solve this problem, popular 
methods for doing this are: one-versus-all method using 
Winner-Takes-All strategy (WTA SVMs), one-versus-one 
method implemented by Max-Wins Voting (MWV SVMs), 
DAG SVMs and error-correcting codes [7]. Hsu and Lin [8] 
compared these methods on a number of data sets and 
found that MWV SVMs and WTA SVMs give similar 
generalization performance [8]. Hastie and Tibshirani [9] 
proposed a good general strategy called pairwise coupling 
for combining posterior probabilities provided by individual 
binary classifiers in order to do multi-class classification and 
extended it in [10] for speeding up multi-class. Since SVMs 
do not naturally give out posterior probabilities, they 
suggested a particular way of generating these probabilities 
from the binary SVMs outputs and then used these 
probabilities together with pairwise coupling to do multi-
class classification.  
 
Here, we use a multi-class SVM classifier based on one 
versus one algorithm (the voting strategy) [15,16], and use 
the Support Vector Machine toolbox for MATLAB. The 
classifier is designed to read two input data files, the training 
data and the test data. 
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3. Kernel Functions. 

Kernel functions  are used  to non-linearly  map  the  input  
data  to a high-dimensional space (feature space). The new 
mapping is then linearly separable [6,11,12]. The idea of the 
kernel function is to enable operations to be performed in 
the input space rather than the potentially high dimension 
feature space. Hence the inner product does  not  need  to  
be  evaluated  in  the  feature  space. The mapping is 
achieved  by replacement  of  the  inner  product  (x. 
y)→Φ(x).Φ(y)  this  mapping  is defined  by  the  kernel, 
K(x, y) = Φ(x).Φ(y). 
 
4. The Proposed Kernel Function. 
As we mentioned, kernel functions were proposed to handle 
non-separable data. They are used to map the input data to a 
high-dimensional space (feature space). So, for a given non-
separable data in order to be linearly separable a suitable 
kernel is chosen. Classical kernels such as Gauss and 
Polynomial functions, each one performs better with some 
data sets.  Here, we try to formulate a new kernel that could 
obtain good performance with all data sets and specially 
high dimension ones (data sets with many attributes). 
The following Polynomial function performs good with 
nearly all data sets, except high dimension ones,                                                   

,1 21
d), xx (POLY ><+= where d is the polynomial 

degree. The same performance is obtained with Gauss 
Radial Basis function of the following form,                      

) / (PD),)-x(-sum(x RBF ii
2

21exp =  
where p is the kernel parameter, D the dimension of the 
input vector (number of attributes).        
 
We propose a new form of kernel functions which is more 
complex that could handle high dimension data sets, we 
denote it as PRBF. This kernel combines both Gauss and 
Polynomial functions, so it performs better with nearly all 
data sets,                                        

.exp1 d2
21 ) / (PD)))-x(-sum(x (PRBF ii+=  

The performance of this kernel is shown later by the 
experimental results. 
 
4.1. The Proposed Kernel Function Analysis. 

The proposed kernel function (PRBF) has large convex than 
the classical Polynomial and Gaussian functions. In addition 
this function is decreasing when x decreases and it is 

continuous.  If we calculate the limit of (PRBF/RBF) we 
will get,                             
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therefore, the proposed function converges faster than the 
Gauss function. We normalized the data sets to be within 
the interval [-1,1], because the Polynomial function will 
diverge in large intervals, and the proposed function has 
faster convergence within this interval. The following Fig. 
(2), Fig. (3) and Fig. (4) show the shape of Polynomial 
(POLY), Gauss (RBF) and the proposed (PRBF) kernels, 
respectively, within the interval [-1,1] and with two-
dimension vectors x1,x2.                                      

                        1
2

3
4

5

1
2

3

4
5
0

10

20

30

40

X1

Polynomial Function

X2

P
ol

y

                . 
Fig. (2) the Polynomial kernel 
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Fig. (3) The Gauss kernel 
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Fig. (4) The proposed kernel 

 
 
 
5. A Comparison Between the Proposed  Kernel and 
Traditional Ones. 

5.1. Data Sets.  

In order to evaluate the performance of the proposed kernel 
with SVMs, we carried out some experiments with different 
data sets. Table (1) shows the description of these data sets 
([13],[14]) and for more details can be seen in [13,14]. We 
can divide these data sets according to the training set size 
into two types, large data sets (1→4) and small ones (5→8).  
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5.2. Experiments. 

We design a multi-class SVM classifier based on one versus 
one algorithm (the voting strategy)[15] and we use the 
Support Vector Machine toolbox for MATLAB. We design 
the classifier to read two input data files, the training data 
and the test data. Each file is organized as records, each of 
which consists of a vector of attributes X=[x1, x2, ..., xM] 
followed by the target Y Є {y1, y2, ..., yC} where M is the 
number of attributes and C is the number of classes. It 
constructs C(C-1)/2 binary classifiers, and uses the training 
data to find the optimum separating hyperplane. Finally, we 
use the test data to compute the accuracy of our classifier 
from the equation,  Acc = ( n / N ) *100, where n is the 
number of correct classified examples and N is the total 
number of the test examples. We compare the results of 
Polynomial, Gauss and the proposed kernels with the 
classifier as in Table(2). 
 

 
Table(2): SVM classification accuracy. 

 
 
 
 
5.3. Result Analysis. 

From Table (2) it is obvious that Gauss Radial Basis function 
with γ=3 accomplishes better accuracy with  the small data 
sets (5→8) than the Polynomial function, and the Polynomial 
kernel with d=4  gives better results in the large sets (1→4). 
Whereas our proposed kernel, PRBF, accomplishes the best 
accuracy in nearly all the data sets, and specially in the largest 
number of attributes data set number (5), because the 
proposed function is more complex and combines the 
performance of both its parents, Gauss and Polynomial 
functions. 

 

 

 

 

 

 

 

 

 

 

 

Table (3) presents the mean accuracy we obtained  from all 
kernels, it is obvious that the new proposed kernel obtains the 
best mean accuracy compared  to  the classical Gauss and 
Polynomial function. Fig. (5) summarizes the comparison of 
the performance of the SVMs with different kernels (POLY, 
RBF & PRBF), it is clear that the proposed kernel (PRBF) 
achieves the highest accuracy.  

 

 

 

 

 

 

 

Table (3): SVM mean accuracy. 
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Fig.( 5): SVM mean accuracy. 

 

6. Conclusion 

In this paper, SVMs have been improved to solve the 
classification problems by mapping the training data into a 
feature space by the aid of new kernel functions and then 
separating the data using a large margin hyperplane. The 
computational complexity of the classification operation does 
not depend on the dimensionality of the feature space, which 
can even be infinite.  
 

Test Training Attributes Classes Data set N0. 
5000 15000 16 26 Letter 1 
3448 7435 16 9 pendigits 2 
300 4700 21 3 waveform 3 
2000 4435 36 6 Satimage 4 
500 2686 180 3 DNA 5 
500 1810 18 7 Segment 6 
560 1763 16 3 ABE 7 
31 70 17 7 Zoo 8 

PRBF(P,d=3) POLY(d=4) RBF(γ=3) Data Set 
93.9 93.9 93.9 1 
83.67 82.52 82 2 

99 98.67 95 3 
96.1 96.7 92.95 4 
98.8 89.46 94.86 5 
99 92.12 97 6 

99.82 99.82 100 7 
90.32 87.09 87.09 8 

Mean 
accuracy 

Kernel

92.85 RBF 

92.53 POLY

95.08 PRBF

Table(1): Data Sets 
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We have used different sizes of data sets with different 
attributes from two sources [13,15] websites. It is obvious 
from experimental results that RBF gives better accuracy with  
the small data sets than the Polynomial function. However the 
Polynomial kernel gives better results in the large data sets. 
Whereas our proposed kernel PRBF obtains the best accuracy 
in nearly all the data sets and specially in the largest number of 
attributes data set, because the proposed function combines 
the performance of both its parents, Gauss and Polynomial 
functions. 
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